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Abstract We show that group actions on many treelike compact spaces are not too complicated dynamically.

We first observe that an old argument of Seidler (1990) implies that every action of a topological group G on a

regular continuum is null and therefore also tame. As every local dendron is regular, one concludes that every

action of G on a local dendron is null. We then use a more direct method to show that every continuous group

action of G on a dendron is Rosenthal representable, hence also tame. Similar results are obtained for median

pretrees. As a related result, we show that Helly’s selection principle can be extended to bounded monotone

sequences defined on median pretrees (for example, dendrons or linearly ordered sets). Finally, we point out

some applications of these results to continuous group actions on dendrites.
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1 Introduction and preliminaries

One of the motivations for writing the present work was to show that group actions on dendrons are

Rosenthal representable, hence tame (see Definition 1.1 below). Representations on Banach spaces with

“good” geometry lead to a natural hierarchy in the world of continuous actions G y X of topological

groups G on topological spaces X. In particular, representations on Banach spaces without a copy of l1
(we call them Rosenthal Banach spaces) play a very important role in this hierarchy. According to the

Rosenthal l1-dichotomy [34], and the corresponding dynamical Bourgain-Fremlin-Talagrand dichotomy

[10, 12], there is a sharp dichotomy for metrizable dynamical systems; either their enveloping semigroup

is of cardinality less than or equal to that of the continuum, or it is very large and contains a copy of the

Stone-Čech compactification of N (the set of natural numbers).

When X is compact metrizable, in the first case, such a dynamical system (G,X) is called tame.

By Köhler’s definition [23], tameness means that for every continuous real-valued function f : X → R
the family of functions fG := {fg}g∈G is “combinatorially small”; namely, fG does not contain an

independent sequence.
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Recall the classical definition from [34]: a sequence fn of real-valued functions on a set X is said to be

independent if there exist real numbers a < b such that∩
n∈P

f−1n (−∞, a) ∩
∩

n∈M

f−1n (b,∞) ̸= ∅

for all finite disjoint subsets P and M of N. As in [13, 15] we say that a bounded family of real-valued

functions is a tame family if it does not contain an independent sequence. For compact metrizable

systems X the two concepts discussed above coincide: (G,X) is tame if and only if it is Rosenthal

representable. The case of metrizableX admits also an interesting enveloping semigroup characterization:

(G,X) is tame if and only if every element p ∈ E(G,X) is a Baire class 1 function p : X → X (see [12,16]).

Recall that the enveloping semigroup E(G,X) of a compact G-system X is the pointwise closure of the

set of all g-translations X → X (g ∈ G) in XX .

We next recall the definition of a Banach representation of a dynamical system. For a Banach space V ,

denote by Is(V ) the topological group (equipped with the strong operator topology) of all linear isometries

V → V . The group Is(V ) acts on the dual space V ∗ and its weak-star compact subsets.

Definition 1.1 (See [10,12,30]). A representation of an action G y X on a Banach space V is a pair

(h, α), where h : G → Is(V ) is a strongly continuous co-homomorphism and α : X → V ∗ is a weak-star

continuous bounded map into the dual of V such that (h, α) respect the original action and the induced

dual action, i.e.,

⟨v, α(gx)⟩ = ⟨h(g)(v), α(x)⟩ for all v ∈ V, g ∈ G, x ∈ X.

We say that (G,X) is Rosenthal representable, or WRN (weakly Radon-Nikodym), if there exist a

Rosenthal Banach space V and a representation (h, α) as above such that α is a topological embedding.

For compact G-systems X this concept was defined in [11]. The class of all Rosenthal representable

dynamical systems and its subclass of tame systems are quite large. When considering the trivial action

of G on a space X, this definition reduces to the purely topological notion of a WRN space.

For motivation, properties and examples, see, for example, [11, 12, 15] and the references therein. A

relevant recent result is that, for every circularly (in particular, linearly) ordered compact space K, the

action H+(K) y K, of the topological group H+(K) of all order-preserving homeomorphisms of K on K,

is Rosenthal representable [14].

Recall that a continuum is a compact Hausdorff connected space. A continuum D is said to be a

dendron [42] if every pair of distinct points u and v can be separated in D by a third point w. A

metrizable dendron is called a dendrite. The class of dendrons is an important class of 1-dimensional

treelike compact spaces. A compact space is said to be a local dendron if each of its points admits a

closed neighborhood which is a dendron. Similarly, a compact space is called a local dendrite if each of

its points admits a closed neighborhood which is a dendrite. Clearly, the circle is a local dendrite.

In a dendron X, for every pair of points u and v in X one defines a “generalized arc”

[u, v] = {x ∈ X : x separates u from v} ∪ {u, v}.

In dendrites the generalized arc [u, v] is a real arc, i.e., a topological copy of an interval in the real line.

This is not necessarily the case for dendrons. Indeed, note that any connected linearly ordered compact

space, in its interval topology, is an example of a dendron.

A topological space X is called regular if every point has a local base for its topology, each member

of which has finite boundary. For compact Hausdorff spaces this is equivalent to saying that each open

cover admits a finer (finite) open cover each member of which has finite boundary (see, for example,

[24]). Some works refer to such compact spaces as being rim-finite (see, for example, [43]). Every (local)

dendron is regular [43, Theorem 21]. For more information on dendrons and dendrites, see, for example,

[6, 7, 42].

Our goal in the first part of this paper is to prove the following two results (see Theorems 2.3 and 3.14

for the proofs).

Theorem 1.2. Any action of a group G on a regular continuum is null, hence also tame.
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Theorem 1.3. Let D be a dendron. For every topological group G and continuous action G y D, the

dynamical G-system D is Rosenthal representable, hence also tame.

In the proof of Theorem 2.3 we use a method of Seidler [35]. Note that by a result of Kerr and Li [22]

every null dynamical G-system is tame. This explains the tameness conclusion in Theorem 1.2.

In the proof of Theorem 3.14 we use the following useful characterization.

Theorem 1.4 (See [11, Theorem 6.10]). A dynamical G-system X is Rosenthal representable if and

only if there exists a G-invariant point-separating bounded family F of continuous functions X → R which

is tame as a family of functions.

We consider monotone (not necessarily, continuous) functions (see Definition 3.4) on dendrons D. In

Theorem 3.10 we show that any such function is fragmented (Baire class 1, on dendrites). In order to

apply Theorem 1.4 for dendrons D, in the role of the family F we consider the set of all continuous

monotone functions D → [0, 1].

Later in Theorem 4.7 we will generalize Theorem 1.3 to compact median pretrees with monotone group

actions. This approach provides the following corollary (see Corollary 4.8).

Corollary 1.5. Let X be a Z-tree. Denote by Ends(X) the set of all its ends. Then for every monotone

group action G y X by homeomorphisms, the induced action of G on the compact space X̂ := X ∪
Ends(X) is Rosenthal representable.

As a related result we show, in Theorem 4.9, that Helly’s selection principle can be extended to bounded

monotone sequences of real-valued functions defined on median pretrees (e.g., dendrons or linearly ordered

sets). Also in Theorem 4.13 we show that every monotone real-valued function f : X → R on a compact

Hausdorff pretree is fragmented.

In the second part of the paper, as applications of Theorems 1.2 and 1.3, and building on ideas

and results from [7] and [28], we easily recover some old results, and prove some new ones, concerning

dynamical systems defined on (local) dendrons.

In Section 5 we show that when a group G acts on a dendrite X with no finite orbits and M ⊂ X

is the unique minimal set, then the action on X is strongly proximal and the action on M is extremely

proximal. In Section 6 we show that for an amenable group G every infinite minimal set in a dendrite

system (G,X) is almost automorphic. This result was strengthened recently by Shi and Ye [38], who

have shown that it is actually equicontinuous. In the final section we comment on the special case where

the acting group is the group of integers.

2 Actions of groups on a regular continuum are null

Following Goodman [19], for a sequence S = {s1, s2, . . . } ⊂ G we define the topological sequence entropy

of a dynamical system (G,X), with respect to S and a finite open cover A of X, by

htop(X,A;S) = lim
n→∞

n−1 log

(
N

( n∨
i=1

si(A)

))
,

where N(·) denotes the minimal cardinality of a subcover. We say that (G,X) is null if htop(X,A;S) = 0

for all open covers A of X and all sequences S in G.

The proofs in this section are taken, almost verbatim, from Seidler’s paper [35]. For a subset A ⊂ X

we denote its boundary by ∂(A).

Lemma 2.1. Let A be an open cover of a compact continuum X and let P be the set of boundary

points of elements of A. If A is a minimal cover then the number of elements of A is at most the number

of elements in P .

Proof. Assume that A does not have a proper subcover. Then A is a finite collection because X is

compact. Let a be the number of elements of A so that A = {Ai : 1 6 i 6 a}. Let Aj ∈ A, and let

V =
∪

i ̸=j Ai. Note that V is open as a union of open sets. Because A does not have a proper subcover
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we see that X \ V ̸= ∅, so that ∂(V ) ̸= ∅, since X is connected. Furthermore, ∂(V ) ⊂ P because V is a

finite union of elements of A. As V is open, ∂(V ) ∩ V = ∅, so that ∂(V ) ⊂ Aj . Thus, for each element

Aj of A, there must exist a nonempty subset of P contained in Aj but disjoint from every other element

of A. This implies that the number of elements of A is at most the number of elements in P .

Lemma 2.2. Let G be a countable infinite group acting on a regular compact continuum X. Let

S = {s0, s1, s2, . . . } be a sequence of elements of G. Let A be a minimal open cover of X of at least

two elements such that every element of A has finite boundary. Let LA be the total number of boundary

points of elements of A. For each positive integer n, let Mn be a subcover of minimum cardinality of∨n−1
i=0 si(A) and let Pn be the collection of boundary points of elements of Ã =

∪n−1
i=0 si(A). Then

(1) For each positive integer n every boundary point of an element of Mn is in Pn.

(2) N(
∨n−1

i=0 si(A)) 6 nLA.

Proof. (1) Let n be a positive integer and let x be a boundary point of M ∈ Mn. By the definition

of Mn, for each positive integer 0 6 i < n, there exists Vi ∈ Ã such that M =
∩n−1

i=0 Vi. Let x be a

boundary point of M and let B be an open set containing x; clearly B ∩M ̸= ∅ so that B ∩ Vi ̸= ∅ for

each i. For each Vi, this requires that either x ∈ ∂(Vi) or x ∈ Vi. Suppose that every Vi contains x. Then

x ∈ M by definition. But this contradicts x ∈ ∂(M), because M is open. Thus x is a boundary point of

at least one Vi and thus x ∈ Pn.

(2) Let n be a positive integer. Because each sj is a homeomorphism the number of boundary points

of elements of sj(A) is LA for every integer j. This requires that the number of elements of Pn be at

most nLA. As every boundary point of an element of Mn is in Pn and as Mn does not have a proper

subcover, Lemma 2.1 implies that there exist at most nLA elements in Mn. The desired result then

follows from the definition of Mn.

Theorem 2.3. Every action of a group G on a regular continuum is null, hence a fortiori tame.

Proof. Let X be a regular compact space on which G acts. Let A be a minimal open cover of X

containing at least two elements such that every element of A has finite boundary. Let LA be the total

number of boundary points of elements of A. Given S = {s1, s2, . . . } ⊂ G, we have then, from Part (2)

of Lemma 2.2, that

htop(X,A;S) = lim
n→∞

n−1 log

(
N

( n∨
i=1

si(A)

))
6 lim

n→∞
n−1 log(nLA) = 0.

Thus htop(X;S) = 0 and this shows that the system (G,X) is null. By a theorem of Kerr and Li [22] it

is also tame.

Remark 2.4. In [22, Theorem 12.2], Kerr and Li demonstrated with a simple proof, that every action

of a convergence group G on a compact space X (in particular, any hyperbolic group acting on its Gromov

boundary) is null.

3 Dendrons, monotone functions and group actions

3.1 Standard betweenness relations and dendrons

All the topological spaces in this work are assumed to be Hausdorff. Let X be a connected topological

space and u, v ∈ X. As usual, we say that a point w separates u and v in X if there exist in X open

disjoint neighborhoods U and V of u and v respectively such that X \ {w} = U ∪ V .

For every u, v in X define the “generalized arc”

[u, v] = {x ∈ X : x separates u from v} ∪ {u, v}.

By definition [u, v] = [v, u].
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Definition 3.1. Let X be a topological space and u,w, v ∈ X. We say that w is between u and v in X

if w ∈ [u, v], i.e., w separates u and v or w ∈ {u, v}. This defines a natural betweenness ternary relation

on X. Denote by RB this ternary relation. Sometimes we write ⟨u,w, v⟩ instead of (u,w, v) ∈ RB.

Lemma 3.2. Let D be a dendron.

(1) (See [42]) Then D is locally connected and the intersection of arbitrary family of subcontinua of D

is either empty or is a continuum.

(2) (See [42, Corollary 2.15.1]) [u, v] is the smallest subcontinuum of D containing u and v, i.e.,

[u, v] =
∩

{C ⊆ D : u, v ∈ C and C is a subcontinuum}.

(3) (See [3]) [a, b] ⊆ [a, c] ∪ [c, b] for every a, b, c ∈ D.

Every dendron with its standard betweenness relation is a pretree (see Section 4). This provides another

explanation of Lemma 3.2(3). The following proposition can be derived from a result of Bankston [4,

Theorem 3.1], which, in fact, shows that this assertion holds for every locally connected continuum. The

direct proof given below, for dendrons, was explained to us by Nicolas Monod.

Proposition 3.3. Let D be a dendron. Then the betweenness relation RB on D is closed.

Proof. Suppose that in D we have converging nets, limui = u, limi wi = w and lim vi = v such

that ⟨ui, wi, vi⟩ for every i ∈ I. We have to show that ⟨u,w, v⟩. Assuming the contrary, we have

w /∈ [u, v]. Since [u, v] is compact there exist neighborhoods U , W , V of u, w, v respectively such that

W ∩ (U ∪ [u, v] ∪ V ) = ∅. Since D is locally connected, we can assume, in addition, that U and V are

connected and closed. There exists i0 such that wi0 ∈ W , ui0 ∈ U , vi0 ∈ V . By Lemma 3.2(2) we have

[ui0 , u] ⊂ U , [v, vi0 ] ⊂ V . Then [ui0 , vi0 ] ⊂ [ui0 , u] ∪ [u, v] ∪ [v, vi0 ] by Lemma 3.2(3). By our choice W

does not meet [ui0 , u]∪ [u, v]∪ [v, vi0 ], hence, wi0 /∈ [ui0 , vi0 ]. This contradiction completes the proof.

Note that in the comb space (which is not locally connected) the relation RB is not closed (see Bankston

[4, Exercise 3.4(ii)]).

3.2 Monotone functions

Definition 3.4. Let us say that a (not necessarily continuous) map f : X → Y between two

connected topological spaces is:

(1) B-monotone if it respects the betweenness relations RB (from Definition 3.1) of X and Y , which

means that ⟨u,w, v⟩ implies ⟨f(u), f(w), f(v)⟩. It is equivalent to the requirement that f be interval

preserving : f [u, v] ⊆ [f(u), f(v)]. Notation: f ∈ MB(X,Y ). For Y = R we write MB(X).

(2) C-monotone (or, simply, monotone) if the preimage f−1(A) of every connected subset A ⊂ Y is

connected. Notation: f ∈ MC(X,Y ). For Y = R we write MC(X).

For continuous maps on continua definition (2) is well known. See Kuratowski [24, Section 46]. Not

every B-monotone continuous function is C-monotone. For a concrete example consider the distance

(continuous) function

f : [0, 1]2 → R, x 7→ d(x,K), K :=

([
0,

1

3

]
∪
[
2

3
, 1

])
× [0, 1].

The fiber f−1(0) = K is not connected. So f is not monotone. On the other hand, f is B-monotone

because [0, 1]2 has no separating points.

Lemma 3.5. Let X be a connected space.

(1) Composition of B-monotone (C-monotone) functions is B-monotone (respectively, C-monotone).

(2) Let G y X be an action of a group G on X by homeomorphisms. For every g ∈ G and every f ∈
MB(X) (f ∈ MC(X)) we have fg ∈ MB(X) (respectively, fg ∈ MC(X)), where (fg)(x) := f(gx).

(3) The set MB(X,D) is a pointwise closed (hence, compact) subset of DX for every dendron D.

(4) The set MB(X, [c, d]) is a pointwise closed (hence, compact) subset of [c, d]X .
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Proof. (1) and (2) are straightforward.

(3) Let f : X → D be the pointwise limit of the net fi : X → D, i ∈ I where each fi ∈ MB(X,D). We

have to show that f is also B-monotone, i.e., ⟨u,w, v⟩ in X implies that ⟨f(u), f(w), f(v)⟩ in D. Since

every fi is B-monotone we have ⟨fi(u), fi(w), fi(v)⟩. As we already mentioned (see Proposition 3.3) the

betweenness relation RB is closed in D3. So, since f is the pointwise limit of fi we get ⟨f(u), f(w), f(v)⟩.
(4) is a particular case of (3).

Lemma 3.6. For every dendrons X,Y we have MC(X,Y ) = MB(X,Y ) and MC(X) = MB(X).

Proof. (1) MC(X,Y ) ⊆ MB(X,Y ).

Assuming the contrary let f : X → Y be C-monotone but not B-monotone. Then there exist u,w, v

∈ X such that ⟨u,w, v⟩ but ¬⟨f(u), f(w), f(v)⟩. This means that w separates the points u and v but

f(w) does not separate the pair f(u), f(v) in Y and f(w) /∈ {f(u), f(v)}. So,

f(w) /∈ C := [f(u), f(v)].

Since Y is a dendron the generalized arc C = [f(u), f(v)] is connected (see Lemma 3.2). By the C-

monotonicity of the function f the preimage f−1(C) is connected in X. As w separates u and v in X we

have

X \ {w} = U ∪ V,

where U and V are disjoint open neighborhoods of u and v, respectively. Then u ∈ f−1(C) ∩ U and

v ∈ f−1(C) ∩ V are disjoint, nonempty (and open in f−1(C)). The union of these subsets is f−1(C)

(because w /∈ f−1(C)). So, we get that f−1(C) is not connected, a contradiction to the fact that f is

C-monotone.

(2) MC(X,Y ) ⊇ MB(X,Y ).

Assuming the contrary let f ∈ MB(X,Y ) such that f /∈ MC(X,Y ). Then there exists a connected

subset C ⊂ Y such that f−1(C) is not connected in X. So there exist (distinct) u, v ∈ f−1(C) such that

the “generalized arc” [u, v] (which is connected by Lemma 3.2 because X is a dendron) is not contained

in f−1(C). Therefore, there exists w ∈ [u, v] such that w /∈ f−1(C). Then ⟨u,w, v⟩ but it is not true that
⟨f(u), f(w), f(v)⟩ because f(u), f(v) ∈ C ⊂ Y \ {f(w)}, and C is connected.

This proves MC(X,Y ) = MB(X,Y ). In order to conclude that MC(X) = MB(X) use the linear order

equivalence R → (0, 1) ⊂ Y := [0, 1], x 7→ x
1+|x| .

Remark 3.7. Lemma 3.6 suggests dropping the subscripts “C” and “B” and writing simplyM(D1, D2).

We write CM(D) for the set of continuous monotone real-valued functions on D.

Recall that the set F(X) of fragmented real-valued functions on X is a vector space over R. For the

definition and properties of fragmented functions we refer to [10,11,30]. In the present paper we only use

fragmentability in the case of real-valued functions f : X → R defined on compact X. In this case the

fragmentability of f is equivalent to the PCP-property (see [10]), meaning that for every closed nonempty

subset Y ⊆ X the restriction f |Y : Y → R has a point of continuity. For Polish X, F(X) coincides with

the set B1(X) of Baire class 1 functions. A function f : X → Y is said to be a Baire class 1 function if

the inverse image f−1(O) of every open set O ⊂ Y is Fσ in X.

In [13, 31] we proved that every linear order preserving function on a compact linearly ordered topo-

logical space is fragmented. The following Theorem 3.9 is a result in the same spirit.

Definition 3.8. Let R be an abstract ternary relation on a Hausdorff topological space (X, τ).

(1) We say that R is τ -stable if for every pair of distinct points u, v ∈ X, there are, a point w ∈ X

with w ∈ [u, v] \ {u, v} (where [u, v] := {x ∈ X : ⟨u,w, v⟩} ∪ {u, v}), and neighborhoods U and V of u

and v respectively, such that w ∈ [x, y] for every x ∈ U, y ∈ V .

(2) We say that R is weakly τ -stable if for every infinite subset K ⊂ X there exist: a pair of distinct

points u, v ∈ K, a point w ∈ X with w ∈ [u, v]\{u, v}, and neighborhoods U and V of u and v respectively,

such that w ∈ [x, y] for every x ∈ U ∩K, y ∈ V ∩K.

Let R be a ternary relation on X and let f : X → R respect R and the standard betweenness relation

of the reals. We will say that f is an R-monotone function.
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Theorem 3.9. Let (X, τ) be a compact space and R a ternary relation on X which is weakly τ -stable.

Then every R-monotone function f : X → R is fragmented.

Proof. If f is not fragmented then, by [41, Lemma 3.7] there exist a closed nonempty subspace L ⊂ X

and real numbers α < β such that the subsets f−1(−∞, α) ∩ L and f−1(β,∞) ∩ L are dense in L, i.e.,

cl(f−1(−∞, α) ∩ L) = cl(f−1(β,∞) ∩ L) = L. (3.1)

L is necessarily infinite (because f−1(−∞, α) ∩ L and f−1(β,∞) ∩ L are disjoint). Since X is weakly

τ -stable we may choose distinct points u, v ∈ L, w ∈ X with w ∈ [u, v] \ {u, v}, and τ -neighborhoods U

and V of u and v respectively such that ⟨x,w, y⟩ for every x ∈ U ∩ L, y ∈ V ∩ L.

By Equation (3.1) there exist u′, u′′ ∈ U ∩ L and v′, v′′ ∈ V ∩ L such that

f(u′) < α, f(v′) < α, β < f(u′′), β < f(v′′). (3.2)

It is enough to show that f is not R-monotone. There are two cases to check:

Case 1. f(w) 6 β. Then ⟨u′′, w, v′′⟩ but f(w) is not between f(u′′), f(v′′) in R.
Case 2. β < f(w). Then ⟨u′, w, v′⟩ but f(w) is not between f(u′), f(v′) in R.

Theorem 3.10. Let D be a dendron. Every monotone function f : D → R is fragmented (Baire

class 1, when D is a dendrite). It follows that M(D) ⊂ F(D).

Proof. For a dendron D the standard betweenness relation (see Definition 3.1) is stable. Indeed, by the

definition of dendrons for every distinct u ̸= v we have a separation by a point w. So, D \ {w} = U ∪ V ,

where U and V are open disjoint neighborhoods of u and v. Hence, w separates any pair x ∈ U , y ∈ V .

For dendrites we have M(D) ⊂ B1(D) = F(D).

Corollary 3.11. For every dendron D the family F := CM(D, [0, 1]) is tame.

Proof. By Lemma 3.5(4), every function φ : D → [0, 1] from the pointwise closure of F in [c, d]D is a

(not necessarily continuous) B-monotone function. By Lemma 3.6, φ ∈ M(D, [0, 1]). By Theorem 3.10 we

know that M(D, [0, 1]) ⊂ F(D) and we conclude that clp(F ) ⊂ F(D). This means that F is a Rosenthal

family, in terms of [11]. This is the same as saying that F does not contain an independent sequence (for

a detailed proof see for example [13, Theorem 2.12]).

In [42, Corollary 2.15] van Mill and Wattel proved the following remarkable result. We thank Jan van

Mill for providing us the short proof below. For dendrites Theorem 3.12 is well known [6, Theorem 1.2].

Theorem 3.12. For every dendron D and every subcontinuum C there exists a naturally defined

continuous retraction rC : D → C. Moreover, this retraction is always monotone.

Proof. The map rC : D → C is defined by

rC(x) =
∩

{[x, c] ∩ C : c ∈ C}.

We discuss only the monotonicity of rC . Other details see in [42, Corollary 2.15]. Let x ∈ D and

y = rC(x). If p ∈ [x, y] then [p, y] is contained in [x, y]. Since y ∈ C, the formula for rC(p) gives us

that rC(p) ∈ [p, y] ∩ C = y, hence rC(p) = y. Thus all the points in the fiber of the point y ∈ C

can be connected to y by a continuum in the fiber. So, r−1C (y) is connected for every y ∈ C. Since

rC : D → C is a continuous closed map then by [24, Section 46, Subsection I, Theorem 9] the map rC is

C-monotone (see Definition 3.4). The subcontinuum C is also a dendron. So, rC is also B-monotone (see

Lemma 3.6).

This result leads to the following lemma.

Lemma 3.13. On every dendron D and every pair u and v of distinct points in D there exists a

continuous monotone function f : D → [0, 1] such that f(u) = 0, f(v) = 1.

Proof. By Theorem 3.12 for every pair of distinct points u, v ∈ D we have a monotone continuous

retraction r[u,v] : D → [u, v]. Now recall that the “generalized arc” [u, v] is a linearly ordered compact
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connected space [42]. By results of Nachbin [32, pp. 48 and 113] we have an order-preserving (hence,

monotone in the sense of Definition 3.4(1)) continuous map h : [u, v] → [0, 1]. The composition f =

h ◦ r[u,v] is the required continuous monotone map D → [0, 1] which separates u and v.

Theorem 3.14. Let D be a dendron. For every topological group G and continuous action G y D,

the dynamical G-system D is Rosenthal representable (hence, also tame). It follows that the topological

group H(D) is Rosenthal representable.

Proof. By Lemma 3.5(2) we have fg ∈ CM(D, [0, 1]) for every g ∈ G and every f ∈ CM(D, [0, 1]).

So, if F := CM(D, [0, 1]) then FG = F is a G-invariant bounded family of continuous functions. By

Corollary 3.11, F is a tame family. By Lemma 3.13, CM(D, [0, 1]) separates the points of D. So one

may apply Theorem 1.4 and we obtain that the dynamical G-system D is Rosenthal representable.

Finally, note that it is straightforward to see that Rosenthal representability of any compact dynamical

H(K)-system K implies that the topological group H(K) is Rosenthal representable (for details see for

example [13, Lemma 3.5]).

Theorem 3.15. Every monotone map f : D1 → D2 between dendrons is fragmented (Baire class 1

map, if D1 and D2 are dendrites).

Proof. By Lemma 3.13 there exists a family of continuous monotone maps {qi : D2 → [0, 1] : i ∈ I}
which separates the points ofD2. Then any composition qi◦f : D1 → [0, 1] is monotone, hence fragmented

by Theorem 3.10. Now, using [11, Lemma 2.3.3] we obtain that the original map f : D1 → D2 is also

fragmented.

The tameness of any continuous group actions on dendrons G y D can be derived from Theorem 3.15

by the following corollary.

Corollary 3.16. Let G act on a dendron D. Then every element of the enveloping semigroup E(G,D)

is fragmented, and hence the system (G,D) is tame.

Proof. Using Lemma 3.5(3) we obtain that every element p ∈ E(G,D) is a monotone map p : D → D.

By Theorem 3.15, p is a fragmented map and it follows that the G-system D is tame by the enveloping

semigroup characterization of tameness [11].

Theorem 3.14 implies also the following purely topological nontrivial fact.

Corollary 3.17. Every dendron D, as a topological space, is Rosenthal representable, i.e., D is WRN.

As a related result note that by [42, Theorem 6.6] a Hausdorff space can be embedded in a dendron if

and only if it possesses a cross-free (see [42] for the definitions) closed subbase.

Remark 3.18. Theorem 3.14 remains true also for continuous monotone monoid actions S on D such

that for all s ∈ S the corresponding s-translation D → D is monotone. Clearly continuous group actions

on dendrons are always monotone.

4 Monotone actions on median pretrees

In this section we consider actions on a pretree, a useful treelike structure that naturally generalizes

several important structures including linear orders and the betweenness relation on dendrons. By a

pretree (see for example [5,27]) we mean a pair (X,R), where X is a set and R is a ternary relation on X

(we write ⟨a, b, c⟩ to denote (a, b, c) ∈ R) satisfying the following three axioms:

(B1) ⟨a, b, c⟩ ⇒ ⟨c, b, a⟩.
(B2) ⟨a, b, c⟩ ∧ ⟨a, c, b⟩ ⇔ b = c.

(B3) ⟨a, b, c⟩ ⇒ ⟨a, b, d⟩ ∨ ⟨d, b, c⟩.
In [2] such a ternary relation is called a B-relation.

It is convenient to use also an interval approach. For every u, v ∈ X define

[u, v] := {x ∈ X : ⟨u, x, v⟩}.
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In the list of properties below the first four conditions (A0), (A1), (A2) and (A3), as a system of

axioms, are equivalent to the above definition via (B1), (B2) and (B3) (see [27]).

Lemma 4.1. In every pretree (X,R) we have

(A0) [a, b] ⊇ {a, b}.
(A1) [a, b] = [b, a].

(A2) If c ∈ [a, b] and b ∈ [a, c] then b = c.

(A3) [a, b] ⊆ [a, c] ∪ [c, b] for every a, b, c ∈ X.

(A4) [a, b] = [a, c] ∪ [c, b] for every a, b ∈ X, c ∈ [a, b].

(A5) If b ∈ [a, c] and c ∈ [a, d] then c ∈ [b, d].

Following [27] we define the so-called shadow topology τs on (X,R). Given an ordered pair (u, v) ∈
X2, u ̸= v, let

Sv
u := {x ∈ X : u ∈ [x, v]}

be the shadow in X defined by the ordered pair (u, v). Pictorially, the shadow Sv
u is cast by a point u

when the light source is located at the point v. The family S = {Sv
u : u, v ∈ X,u ̸= v} is a subbase for

the closed sets of the topology τs.

In the case of a linearly ordered set we get the interval topology. In general, for an abstract pretree

the shadow topology is often (but not always) Hausdorff. Furthermore, by [27, Theorem 7.3] a pretree

equipped with its shadow topology is Hausdorff if and only if, as a topological space, it can be embedded

into a dendron. So, by Corollary 3.17 we can deduce the following:

Corollary 4.2. Every Hausdorff pretree (for example, linearly ordered topological space) is a WRN

topological space.

For every triple a, b, c in a pretree X the median m(a, b, c) is the intersection

m(a, b, c) := [a, b] ∩ [a, c] ∩ [b, c].

When it is nonempty the median is a singleton (see for example [5, p. 14]). A pretree (X,R) for which

this intersection is always nonempty is called a median pretree.

A median algebra (see for example [5, p. 14] or [40]) is a pair (X,m), where the function m : X3 → X

satisfies the following three axioms:

(M1) m(x, x, y) = x.

(M2) m(x, y, z) = m(x, y, z) = m(y, z, x).

(M3) m(m(x, y, z), u, v) = m(x,m(y, u, v),m(z, u, v)).

Remark 4.3. (1) Every median pretree is a median algebra.

(2) A map f : X1 → X2 between two median algebras is monotone (i.e., interval preserving) if and

only if f is median-preserving ([40, p. 120]) if and only if f is convex ([40, p. 123]). Convexity of f means

that the preimage of a convex subset is convex.

(3) Every median pretree is Hausdorff in its shadow topology [27, Theorem 7.3].

A compact (median) pretree is a (median) pretree (X,R) for which the shadow topology τs is compact.

Example 4.4. (1) Every dendron D is a compact median pretree with respect to the standard be-

tweenness relation RB . Its shadow topology is just the given compact Hausdorff topology on D (see

[27,42]).

(2) Every linearly ordered set is a median pretree. Its shadow topology is just the interval topology of

the order.

(3) Let X be a Z-tree (a median pretree with finite intervals [u, v]). Denote by Ends(X) the set of all

its ends. According to [27, Section 12] the set X ∪Ends(X) carries a natural τs-compact median pretree

structure.

Proposition 4.5. Let (X,R) be a median pretree. Then the retraction map

ϕu,v : X → [u, v], x 7→ m(u, x, v)

is monotone and continuous in the shadow topology for every u, v ∈ X.
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Proof. Note that always c ∈ [a, b] if and only if med(a, c, b) = c. So, ϕu,v(x) = x for every x ∈
[u, v]. This means that ϕu,v is a retraction. A well-known property of median algebras, namely [39,

Equation (8.7)], directly implies thatm(m(u, x1, v),m(u, x2, v),m(u, x3, v)) = m(u,m(x1, x2, x3), v). This

means that m(ϕ(x1), ϕ(x2), ϕ(x3)) = ϕ(m(x1, x2, x3)). So every ϕu,v is a median preserving map (hence,

monotone, as a map between pretrees).

Now we check the continuity of ϕu,v. If u = v then ϕu,v is constant. So, we can suppose that u ̸= v.

Every interval [a, b] is a convex subset of X. Hence its interval topology and its topological subspace

topology of (X, τs) are the same (see [27, Proposition 6.5]). It is enough to show that the preimage of a

closed subbase element in the space [u, v] is closed in the shadow topology. We prove that in fact

ϕ−1u,v[u,w] = Sv
w, ∀w ∈ [u, v) and ϕ−1u,v[w, v] = Su

w, ∀w ∈ (u, v].

First we show that ϕ−1u,v[u,w] ⊆ Sv
w.

Let x ∈ ϕ−1u,v[u,w]. This means that m := m(u, x, v) ∈ [u,w]. Since w ∈ [u, v], by (A5) we have

w ∈ [m, v]. So, [m,w] ∪ [w, v] = [m, v] by (A4). Again, by (A4) we obtain [x,m] ∪ [m, v] = [x, v]. So,

w ∈ [x, v]. Hence, x ∈ Sv
w.

Now we show ϕ−1u,v[u,w] ⊇ Sv
w. Let x ∈ Sv

w. This means that w ∈ [x, v]. We have to show that

m ∈ [u,w] (where m := m(u, x, v)). Assuming the contrary, suppose m /∈ [u,w]. Clearly, m ∈ [u, v]. By

(A3), [u, v] ⊆ [u,w] ∪ [w, v]. So, we have m ∈ (w, v]. Since w ∈ [v, x] and m ∈ [v, w], by (A5) we get

w ∈ [m,x] = [x,m]. Similarly, since m ∈ [v, w] and w ∈ [v, u], by (A5) we get w ∈ [m,u].

Now taking into account that m ̸= w by (A2) we have m /∈ [x,w] and also m /∈ [w, u]. So, m /∈
[x,w]∪ [w, u]. Then (A3) guarantees that m /∈ [x, u]. This contradicts the fact that m, being the median

of the triple x, u, v, belongs to [x, u].

Similarly we can check also that ϕ−1w,v[u,w] = Su
w.

Theorem 4.6. Let X be a median pretree. Then every pair of monotone (equivalently, convex) real-

valued functions fi : X → R, i ∈ {0, 1} is not independent.

Proof. Assuming that {f1, f2} is an independent pair, there exist real numbers a < b such that

A1 ∩A2 ̸= ∅, A1 ∩B2 ̸= ∅, B1 ∩A2 ̸= ∅, B1 ∩B2 ̸= ∅,

where Ai = f−1i (−∞, a), Bi = f−1i (b,∞), i ∈ {0, 1}.
Choose four points

a ∈ A1 ∩B2, b ∈ A1 ∩A2, c ∈ A2 ∩B1, d ∈ B1 ∩B2.

By the monotonicity of the functions f1 and f2 the preimages of convex subsets are convex. So, Ai and

Bi are convex. Then

[a, b] ⊂ A1, [b, c] ⊂ A2, [c, d] ⊂ B1, [d, a] ⊂ B2.

Consider the median m := med(c, a, d) = [a, c]∩ [c, d]∩ [d, a]. Then m ∈ [a, c]∩B1∩B2. Using (A3) we

get [a, c] ⊂ [a, b]∪ [b, c] ⊂ A1∪A2. Therefore, m ∈ (A1∪A2)∩ (B1∩B2). Clearly, A1∩B1 = A2∩B2 = ∅.
So, (A1 ∪A2) ∩ (B1 ∩B2) = ∅, a contradiction.

For a compact median pretree X we denote by H+(X) the topological group of R-monotone (equiv-

alently, median-preserving) homeomorphisms. We treat H+(X) as a topological subgroup of the full

homeomorphism group H(X).

The following result generalizes Theorem 3.14. In the case of a dendron D we have H+(D) = H(D).

Theorem 4.7. For every compact median pretree X and its automorphism group G = H+(X) the

action of the topological group G on X is Rosenthal representable. It follows that the topological group

H+(X) is Rosenthal representable.

Proof. Recall again that a median pretree is Hausdorff in its shadow topology (see Remark 4.3(3)). By

Proposition 4.5 the retraction map ϕu,v : X → [u, v], x 7→ m(u, x, v) is monotone and continuous in the

shadow topology for every u, v ∈ X. Every [u, v] is a linearly ordered set with respect to the order x 6 y
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whenever ⟨x, y, v⟩ (see for example [5, p. 14]). Moreover [u, v] = ϕ(X) is compact in the subspace topology

which coincides with the interval topology of the linear order. So, as in Lemma 3.13, using Nachbin’s

result we see that the set CM(X) of continuous monotone functions separates the points. Also, CM(X)

is G-invariant because the action G y X is monotone. Theorem 4.6 guarantees that CM(X) is a tame

family. A median pretree is always Hausdorff in its shadow topology (see Remark 4.3(3)). The rest is

similar to the proof of Theorem 3.14.

By Example 4.4(3), Theorem 4.7 applies when X is a Z-tree and we get the following corollary.

Corollary 4.8. Let X be a Z-tree. Denote by Ends(X) the set of all its ends. Then for every monotone

group action G y X with continuous transformations the induced action of G on the compact space

X̂ := X ∪ Ends(X) is Rosenthal representable.

Such compact spaces X̂ as in Corollary 4.8 are often zero-dimensional. So, at least, formally this case

cannot be deduced from the dendron’s case.

4.1 Generalized Helly’s selection principle

Theorem 4.9. Let X be a median pretree and {fn : X → R}n∈N be a bounded sequence of convex

(equivalently, monotone) real-valued maps. Then there exists a pointwise converging subsequence.

Proof. Combine Theorem 4.6 with the following form of Rosenthal’s theorem: let fn : S → R be a

bounded sequence of functions on a set S. Then it has a subsequence which is pointwise converging or

has a subsequence which is independent; see Theorem 1 in Rosenthal’s classical paper [34]. In Rosenthal’s

original formulation he states a weaker statement “l1-subsequence” (instead of “independent”). However,

as Rosenthal’s proof shows he proves in fact a little bit more (see the text above Lemma 5 on page 2413

of [34]), namely that there exists an independent subsequence.

Corollary 4.10. Let X be either a dendron or a linearly ordered set. Then the pointwise compact set

of all monotone maps M(X, [c, d]) into the real interval [c, d] is sequentially compact.

Remark 4.11. For linearly ordered sets Theorem 4.9 can be extended to sequences of real-valued

functions with bounded total variation [31]. This suggests the idea that one should search for a right

analog for bounded variation functions, defined on dendrons, or more generally on (median) pretrees.

4.2 Fragmentability of monotone functions on compact Hausdorff pretrees

Lemma 4.12. If the shadow topology τs on a pretree (X,R) is Hausdorff (for example, median pretree),

then the pretree relation R is weakly τs-stable (see Definition 3.8(2)).

Proof. We have to show that for every infinite subset K ⊂ X there exist: a pair u, v ∈ K, a point

w ∈ X with w ∈ [u, v] \ {u, v}, neighborhoods U and V of u and v respectively, such that w ∈ [x, y] for

every x ∈ U ∩K and y ∈ V ∩K. In fact, we show this for every x ∈ U and y ∈ V .

First of all note that there exist distinct u, v ∈ K and w ∈ X such that w ∈ [u, v] \ {u, v}. If not,

then K is a star subset in terms of [27]. Since τs is Hausdorff there is no infinite star subset in X by [27,

Theorem 7.3].

Consider the standard shadow topology neighborhoods u ∈ U := X \Su
w and v ∈ V := X \Sv

w. We are

going to show that w ∈ [x, y] for every x ∈ U and y ∈ V . By (B3) and ⟨u,w, v⟩ we have ⟨u,w, x⟩∨⟨x,w, v⟩.
By our choice of x ∈ U = X \ Su

w it is impossible that w ∈ [x, u]. So we necessarily have the second

condition ⟨x,w, v⟩. Now apply again (B3) but now for the triple ⟨x,w, v⟩ and a point y ∈ V . Then by

the definition of V := X \ Sv
w it is impossible that ⟨y, w, v⟩. Therefore, we necessarily have ⟨x,w, y⟩.

Lemma 4.12 and Theorem 3.9 imply the following theorem.

Theorem 4.13. Let (X, τs) be a compact Hausdorff pretree (for example, median pretree). Then every

monotone real-valued function f : X → R is fragmented.

Remark 4.14. By a result of Malyutin [27, Theorem 7.3] every τs-Hausdorff pretree X can be topo-

logically embedded into a dendron D. This leads to a natural question if there exists an equivariant
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version of this embedding. Consider the automorphism group G := Aut(X,R) (of all monotone homeo-

morphisms) as a topological subgroup of H(X, τs). Is it true that there exists an equivariant embedding

of (G,X) into (H(D), D) with some dendron D?

It seems that this is true under an additional assumption that the shadow subbase S of τs is connected

in the sense of [42]. Then it is possible to use the results from [42] and superextensions (as in [27,

Theorem 7.3]).

5 Some consequences of the tameness of actions on dendrites

In the following sections we would like to apply Theorem 1.3 in order to strengthen several known results

on actions of groups on dendrites, mainly from [7,28,33]. For the following definitions, see for example [18].

Definition 5.1. Let (G,X) be a dynamical system.

(1) A pair of points x, y ∈ X is said to be proximal if there is a net gi ∈ G and a point z ∈ X with

lim gix = lim giy = z. The system (G,X) is proximal if every pair of points in X is proximal.

(2) The system (G,X) is strongly proximal if for every probability measure µ on X there is a net gi ∈ G

and a point z ∈ X with lim gi = δz.

(3) An infinite minimal dynamical system (G,X) is said to be extremely proximal if for every nonempty

closed subset A ( X and any nonempty open subset U ⊂ X there is an element g ∈ G with gA ⊂ U .

An action of a group G on a dendron D is called dendro-minimal if every G-invariant subdendron

C ⊂ D is either all of D or the empty set. By Zorn’s lemma every group action on a dendron admits

a (nonempty) dendro-minimal subdendron. An arc C in a dendrite D is a free arc if it contains no end

points: C ∩ End(D) = ∅.
Except for the extreme proximality claim, the following results were proven (independently) in [7, 26,

36,37].

Theorem 5.2. Suppose G acts on a dendrite X with no finite orbits.

(1) There is a unique infinite minimal set M ⊂ X.

(2) If the action is dendro-minimal and X has no free arc then M = X.

(3) The action on M is extremely proximal.

(4) The action on X is proximal.

Proof. (1) is proved in [28, Corollary 4.3]. In fact, it suffices to assume that there is no fixed point (see

Remark 4.2 in [7]).

For (2) see Remark 4.7 in [7].

(3) By Lemma 4.4 of [7] the set of end points of X is contained (and is dense) in M . If x is an endpoint

then it has a basis for its neighborhoods which consists of connected open sets U with |∂(U)| = 1 (see

Lemma 2.3 in [7]). Let K ( M be a closed subset. Thus there is an x ∈ End(X) ∩Kc and a connected

open neighborhood x ∈ U with |∂(U)| = 1. As X is a dendrite we have that U c is also a dendrite and,

by Lemma 4.3 of [7] there is g ∈ G with gK ⊂ gU c ⊂ U .

(4) Given x, y ∈ X there is a sequence gj ∈ G such that the limits gjx = x′ and lim gjy = y′ exist and

are elements of M . Since x′ and y′ are proximal, it follows that x and y are proximal as well.

As corollaries we obtain the following result.

Corollary 5.3. Suppose G acts on a dendrite X with no finite orbits and let M ⊂ X be the unique

minimal set, and then the following hold:

(1) The action of G on M is strongly proximal.

(2) G contains a free group on two generators. In particular, G is not amenable.

(3) (See [7, Corollary 8.3]) The amenable radical of G acts trivially on M .

Proof. It is shown in [17] that extreme proximality implies strong proximality and that a group ad-

mitting a nontrivial extremely proximal action has a free subgroup on two generators (see also [18]). To

prove Part (3), consider the action of the amenable radical, say, R ▹ G on M . This admits an invariant

probability measure, say µ. By strong proximality there is a sequence gi ∈ G and a point y ∈ M such
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that lim giµ = δy. As R is a normal subgroup, it follows that each translation giµ as well as the limit δy
is all R-invariant measures. Next, we deduce similarly that every point mass gy, g ∈ G, is an R fixed

point, and finally conclude that R acts trivially on M .

Proposition 5.4. Let (G,X) be a metric tame dynamical system.

(1) For any element p ∈ E(G,X), the set pX is an analytic, hence universally measurable, subset of X.

(2) For every p ∈ E(G,X) and any probability measure µ on X we have µ(pX) = 1.

Proof. (1) The system (G,X) being tame, by the enveloping semigroup characterization of metric tame

systems [16], we have that every element p ∈ E(G,X) is Baire class 1, hence Borel measurable. It follows

that the set pX is an analytic, hence a universally measurable, subset of X.

(2) As (G,X) is tame there is a sequence gn ∈ G with lim gn → p in E(G,X). Given any function

f ∈ C(X) we have lim f(gnx) = f(px) for every x ∈ X. We also have that the function f ◦ p is Baire

class 1, hence Borel measurable. By Lebesgue’s bounded convergence theorem it follows that∫
f dµ = lim

∫
(f ◦ gn) dµ =

∫
lim(f ◦ gn) dµ =

∫
(f ◦ p) dµ = 1.

Taking f = 1X we conclude that µ(pX) = 1.

The next theorem strengthens Theorem 10.1 of [7].

Theorem 5.5. Suppose G acts on a dendrite X with no finite orbits. Then the system (G,X) is

strongly proximal.

Proof. It follows from Theorem 5.2 that E(G,X) has a unique minimal ideal I ⊂ E(G,X) and that

uX is a singleton for every minimal idempotent u ∈ I. Conversely, for every x ∈ M , there is a minimal

idempotent u ∈ I with uX = {x}. Applying Part (2) of Proposition 5.4 and Theorem 1.3 to u and

denoting uX = {x}, we have δx(uX) = 1, hence u∗µ = δx.

Example 5.6. (1) For each one of Ważewski’s universal dendrites X = Dn, n = 3, 4, . . . ,∞ (see [44]),

the dynamical system (H(X), X), where H(X) is the group of homeomorphisms of X, is minimal, tame

and extremely, hence also strongly, proximal. Recently Kwiatkowska gave a description of the universal

minimal G-system M(G) for the topological group G = H(X) (see [25]). It would be interesting to check

if M(G) as a dynamical G-system is tame. This space M(G) is not a dendrite (being zero-dimensional)

but perhaps it admits some suitable betweenness relation.

(2) Let T be the R-tree built on the Cayley graph of the free group on two generators F2 with

S = {a, b, a−1, b−1} as a set of generators. Let X = T ∪ Y be the natural compactification of T obtained

by adding the boundary Y comprising the infinite reduced words on the generators {a, b, a−1, b−1}. Then
X is a dendrite and the corresponding dynamical system (F2, X) is tame, with Y as its unique minimal

subset, and the system (F2, Y ) is extremely proximal.

(3) Let T be the R-tree built on the increasing array of finite groups Z/2kZ and let Y = lim← Z/2kZ
be the inverse limit of this array which can be identified with the dyadic adding machine. Let X = T ∪Y

be the corresponding compactification of T . The dynamical system (Z, X) is a Z-action on a dendrite,

hence tame, with the (equicontinuous) adding machine Y as its unique minimal subset.

6 Actions of amenable groups on dendrites

Our starting point is the structure theorem for minimal metric tame dynamical systems of amenable

groups [9] (see also [8, 20, 22]).

Theorem 6.1. Let Γ be any group and (G,X) a metric tame minimal system that admits an invariant

probability measure µ. Then X is almost automorphic, i.e., it has the structure X
ι→ Z, where Z is

equicontinuous and ι is an almost one-to-one extension. Moreover, µ is unique and the map ι is a measure

theoretical isomorphism ι : (X,µ,Γ) → (Z, λ,Γ), where λ is the Haar measure on the homogeneous

space Z.
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Thus, when Γ is amenable, since every G-system admits an invariant probability measure, the claim

above holds for any minimal metric tame G-system.

Theorem 6.2. Let (G,X) be a tame dynamical system. Let E = E(G,X) denote its enveloping

semigroup and I ⊂ E be any minimal left ideal in E. Let M be the collection of minimal subsets of X

and set

M̃ =
∪

{M ⊂ X : M ∈ M}.

Let PG(X) be the space of G-invariant probability measures on X. Then

(1) For any element p ∈ E the set pX is an analytic, hence universally measurable, subset of X.

(2) µ(pX) = 1 for every µ ∈ PG(X) and p ∈ E.

(3) For any element p ∈ I the set pX is contained in M̃ .

(4) If µ ∈ PG(X) is ergodic then there exists M ∈ M with µ(M) = 1. Thus the minimal subsystem

(M,µ,G) is uniquely ergodic and satisfies the conclusions of Theorem 6.1.

(5) For any µ ∈ PG(X) the measure dynamical system (X,µ,G) has a discrete spectrum, i.e., L2(µ)

is spanned by the collection of matrix coefficients of finite dimensional unitary representations of G.

Proof. For the claims (1) and (2) repeat the proofs of the corresponding claims in Proposition 5.4.

Claim (3) is clear.

(4) Suppose µ ∈ PG(X) is ergodic. Let p be any element of a minimal ideal in E(G,X). By (2) and

(3), µ(pX) = 1 and we can find a µ-generic point x ∈ pX. Let M = Gx ∈ M1). Then clearly µ(M) = 1.

As the subsystem (G,M) is minimal and tame, it follows from Theorem 6.1 that it is uniquely ergodic

and satisfies the conclusion of that theorem.

(5) Let µ ∈ PG(X) be any invariant measure. As in the proof of (2) we see that the map Vp : f 7→ f ◦p
is a linear operator on L2(µ) of norm less than or equal to 1. Since 1 ◦ p = 1 it follows that ∥Vp∥ = 1.

Moreover, the map V : p 7→ Vp is a continuous semigroup homomorphism from E into the semigroup of

linear contractions of L2(µ) equipped with its strong operator topology. Let u be an idempotent in I.

Then by (2), µ(uX) = 1 and for every x ∈ uX and every p ∈ E we have px = (pu)x. It follows that

the image of E under V coincides with the image of I, {Vp : p ∈ E} = {Vp : p ∈ I}. Moreover, for

every p ∈ I we have µ(pX ∩ uX) = 1, hence px = (up)x, µ-a.e. Thus Vp = Vup and we conclude that

{Vp : p ∈ E} = {Vup : p ∈ I}. Now uI is a group and it follows that this image, which is also the closure

of the Koopman group {Vg : g ∈ G}, is a compact group of unitary operators. The Peter-Weyl theorem

completes the proof.

Now using the results of this section and Theorem 1.3 we get the following corollary.

Corollary 6.3. Suppose an amenable group G acts on a dendrite X. Then

(1) Each minimal subset M ⊂ X is as described in Theorem 6.1 (but see Theorem 6.5 below).

(2) Thus an ergodic invariant probability measure on X is either a uniform distribution on a finite set,

or it is the uniquely ergodic measure on a minimal infinite almost automorphic M ⊂ X.

Remark 6.4. (1) In [21] Huang et al. showed that every tame cascade satisfies the “Möbius disjointness

conjecture”. Their proof is based on the fact that tame cascades have discrete spectrum.

(2) In [1] it was shown that every monotone cascade on a local dendrite satisfies the “Möbius disjointness

conjecture”.

(3) Theorem 2.3 shows that (2) can be derived from (1), at least for every invertible cascade on a local

dendrite.

In the first version of our work, posted on the arXiv on June 26, 2018, we posed the following question:

Question. Is there an amenable group G, an action of G on a dendrite X, and a minimal subset

Y ⊂ X, such that the system (G,Y ) is almost automorphic but not equicontinuous?

On July 4, 2018, Shi and Ye [38] provided a negative answer:

1) For an amenable group G this has the usual meaning. When G is not amenable we can still consider a probability

measure m on the discrete group G such that µ({g}) > 0 for every g ∈ G, and then find a generic point for the Markov

operator on L1(µ) defined by Kf = m ∗ f .
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Theorem 6.5. Let G be an amenable group acting on a dendrite X. Suppose K is a minimal set in X.

Then (G,K) is equicontinuous, and K is either finite or homeomorphic to the Cantor set.

7 Cascades on dendrites

Let (T,X) be a cascade, i.e., a Z-dynamical system where T : X → X is the homeomorphism of X which

corresponds to 1 ∈ Z.
We recall the following results of Naghmouchi [33]; in all of them f : X → X is a monotone dendrite

map. The sets P (f), R(f) and UR(f) denote, respectively, the set of periodic points, recurrent points

and uniformly recurrent points of f . The set Λ(f) is the union of the ω-limit sets.

Theorem 7.1. For any x ∈ X, we have:

(1) ωf (x) is a minimal set.

(2) ωf (x) ⊂ P (f).

Theorem 7.2. For any x ∈ X, ωf (x) is either a finite set or a minimal Cantor set. In particular, f

is not transitive.

Theorem 7.3. The following equalities hold: UR(f) = R(f) = Λ(f) = P (f).

Theorem 7.4. The restriction map f ↾ R(f) is a distal homeomorphism.

Of course every self homeomorphism T : X → X of a dendrite X is monotone.

We can now discuss some of Naghmouchi’s results in [33] as follows (see also [28,29]):

Theorem 7.5. Let T : X → X be a self homeomorphism of a dendrite X and consider the Z-system
(T,X).

(1) If M ⊂ X is a minimal subset then it is either finite or an adding machine.

(2) The union of minimal sets

M̃ =
∪

{M ⊂ X : M is minimal}

is closed.

(3) Every point in X \ M̃ is asymptotic to M̃ , i.e., ωT (x) ⊂ M̃ .

Proof. (1) By Theorem 1.3, the system (T,X) is tame, and so is M . By Theorem 6.1 M is almost

automorphic. By Theorem 7.4 it is distal, and by Theorem 7.2 it is a Cantor set. These facts put together

imply that M is a minimal equicontinuous cascade on a Cantor set, i.e., an adding machine.

(2) follows from Theorem 7.3.

(3) follows from Theorem 7.1.
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